Performance Optimization
This guide covers strategies for optimizing Stepflow workflow performance, including parallelism patterns, resource management, and component selection.
Maximizing Parallelism
Independent Operations
Structure workflows to maximize parallel execution by identifying steps that can run simultaneously:
steps:
  # Load base data
  - id: load_user
    component: /user/load
    input:
      user_id: { $from: { workflow: input }, path: "user_id" }
  # All these can run in parallel after load_user completes
  - id: load_user_posts
    component: /content/posts
    input:
      user_id: { $from: { step: load_user }, path: "id" }
  - id: load_user_followers
    component: /social/followers
    input:
      user_id: { $from: { step: load_user }, path: "id" }
  - id: load_user_activity
    component: /analytics/activity
    input:
      user_id: { $from: { step: load_user }, path: "id" }
  - id: calculate_metrics
    component: /analytics/metrics
    input:
      user_data: { $from: { step: load_user } }
Avoid False Dependencies
Don't create unnecessary dependencies that reduce parallelism:
# ❌ Bad - creates false dependency chain
steps:
  - id: step1
    component: /data/process
    input:
      data: { $from: { workflow: input } }
  - id: step2
    component: /data/validate
    input:
      # This creates unnecessary dependency on step1
      original_data: { $from: { workflow: input } }
      processed_data: { $from: { step: step1 } }
# ✅ Good - remove false dependency
steps:
  - id: step1
    component: /data/process
    input:
      data: { $from: { workflow: input } }
  - id: step2
    component: /data/validate
    input:
      # Can run in parallel with step1
      data: { $from: { workflow: input } }
Parallel Data Fetching
Fetch data from multiple sources simultaneously:
steps:
  # All three data sources fetch in parallel
  - id: fetch_data_source_1
    component: /http/get
    input:
      url: "https://api1.example.com/data"
  - id: fetch_data_source_2
    component: /http/get
    input:
      url: "https://api2.example.com/data"
  - id: fetch_data_source_3
    component: /http/get
    input:
      url: "https://api3.example.com/data"
  # Waits for all three fetches to complete
  - id: combine_data
    component: /data/merge
    input:
      source1: { $from: { step: fetch_data_source_1 } }
      source2: { $from: { step: fetch_data_source_2 } }
      source3: { $from: { step: fetch_data_source_3 } }
Resource Management
Memory Optimization
Use Blob Storage for Large Data
Store large datasets in blobs to avoid memory duplication:
steps:
  # Store large dataset in blob
  - id: store_large_dataset
    component: /builtin/put_blob
    input:
      data: { $from: { step: load_massive_dataset } }
  # Multiple steps can reference the same blob efficiently
  - id: analyze_subset_1
    component: /analytics/process
    input:
      data_blob: { $from: { step: store_large_dataset }, path: "blob_id" }
      filter: "category=A"
  - id: analyze_subset_2
    component: /analytics/process
    input:
      data_blob: { $from: { step: store_large_dataset }, path: "blob_id" }
      filter: "category=B"
Reference Specific Fields
Avoid copying entire large objects by referencing specific fields:
steps:
  - id: process_user_data
    component: /user/process
    input:
      # ✅ Good - reference specific fields
      user_id: { $from: { step: load_user }, path: "id" }
      user_name: { $from: { step: load_user }, path: "profile.name" }
  - id: inefficient_processing
    component: /user/process
    input:
      # ❌ Avoid - copying entire large object
      user_data: { $from: { step: load_user } }
Component Performance
Choose Appropriate Components
Select components based on the complexity of your task:
# For simple data transformations, use lightweight components
- id: extract_field
  component: /extract
  input:
    data: { $from: { step: load_data } }
    path: "metadata.id"
# For complex processing, use specialized components
- id: ai_analysis
  component: /builtin/openai
  input:
    messages: [...]
    model: "gpt-4"
Batch Operations
Process data in batches when possible to reduce overhead:
# ✅ Good - batch processing
- id: process_all_items
  component: /data/batch_process
  input:
    items: { $from: { step: load_items } }
    batch_size: 100
# ❌ Avoid - individual processing (unless parallelism is needed)
- id: process_item_1
  component: /data/process_single
  input:
    item: { $from: { step: load_items }, path: "items[0]" }
Component Configuration
Optimize component settings for your use case:
steps:
  - id: ai_generation
    component: /builtin/openai
    input:
      messages: { $from: { step: create_messages } }
      # Optimize parameters for performance vs quality
      model: "gpt-3.5-turbo"  # Faster than gpt-4
      max_tokens: 150         # Limit output length
      temperature: 0.3        # Lower temperature for faster, more deterministic responses
Data Flow Optimization
Minimize Data Movement
Structure workflows to minimize data copying and movement:
steps:
  # Store shared data once
  - id: store_shared_context
    component: /builtin/put_blob
    input:
      data: { $from: { step: load_context } }
  # Multiple processing steps reference the same blob
  - id: analysis_1
    component: /analytics/type_a
    input:
      context_blob: { $from: { step: store_shared_context }, path: "blob_id" }
      specific_data: { $from: { step: load_specific_1 } }
  - id: analysis_2
    component: /analytics/type_b
    input:
      context_blob: { $from: { step: store_shared_context }, path: "blob_id" }
      specific_data: { $from: { step: load_specific_2 } }
Early Validation
Validate inputs early to avoid expensive processing on invalid data:
steps:
  # Fast validation step
  - id: validate_input
    component: /validation/fast_check
    input:
      data: { $from: { workflow: input } }
  # Expensive processing only runs on valid data
  - id: expensive_processing
    component: /ai/complex_analysis
    input:
      validated_data: { $from: { step: validate_input } }
AI Workflow Optimization
Prompt Optimization
Optimize AI prompts for performance and cost:
steps:
  - id: efficient_ai_call
    component: /builtin/openai
    input:
      messages:
        - role: system
          # Concise system prompt
          content: "Answer briefly and directly."
        - role: user
          # Clear, specific user prompt
          content: { $from: { step: format_prompt }, path: "optimized_prompt" }
      # Performance settings
      max_tokens: 100        # Limit response length
      temperature: 0.1       # Lower temperature for consistency
      top_p: 0.9            # Focus on high-probability tokens
AI Response Caching
Cache AI responses for repeated queries:
steps:
  # Check cache first
  - id: check_ai_cache
    component: /cache/check
    input:
      key: { $from: { step: create_cache_key }, path: "cache_key" }
  # Only call AI if not cached
  - id: generate_ai_response
    component: /builtin/openai
    skipIf: { $from: { step: check_ai_cache }, path: "cache_hit" }
    input:
      messages: { $from: { step: create_messages } }
  # Store response in cache
  - id: cache_ai_response
    component: /cache/store
    skipIf: { $from: { step: check_ai_cache }, path: "cache_hit" }
    input:
      key: { $from: { step: create_cache_key }, path: "cache_key" }
      value: { $from: { step: generate_ai_response } }
Workflow Architecture Patterns
Fan-Out/Fan-In Pattern
Process multiple independent items and combine results:
steps:
  # Fan-out: Process multiple items in parallel
  - id: process_item_1
    component: /item/process
    input:
      item: { $from: { workflow: input }, path: "items[0]" }
  - id: process_item_2
    component: /item/process
    input:
      item: { $from: { workflow: input }, path: "items[1]" }
  - id: process_item_3
    component: /item/process
    input:
      item: { $from: { workflow: input }, path: "items[2]" }
  # Fan-in: Combine all results
  - id: combine_results
    component: /data/combine
    input:
      results:
        - { $from: { step: process_item_1 } }
        - { $from: { step: process_item_2 } }
        - { $from: { step: process_item_3 } }
Pipeline Pattern
Create processing pipelines with minimal intermediate storage:
steps:
  - id: stage_1
    component: /pipeline/extract
    input:
      source: { $from: { workflow: input } }
  - id: stage_2
    component: /pipeline/transform
    input:
      data: { $from: { step: stage_1 } }
  - id: stage_3
    component: /pipeline/load
    input:
      transformed_data: { $from: { step: stage_2 } }
Performance Monitoring
Key Metrics to Track
Monitor these performance indicators:
- Step Execution Time: How long each step takes
- Parallel Efficiency: How well parallel steps utilize resources
- Memory Usage: Peak memory consumption during execution
- Blob Storage Usage: Size and frequency of blob operations
- Component Startup Time: Time to initialize components
Performance Testing
Add performance tests to your workflows:
test:
  cases:
    - name: performance_test
      description: "Ensure workflow completes within time limit"
      tags: ["performance"]
      input:
        # Large input to test performance
        data_size: "1MB"
        batch_size: 1000
      output:
        outcome: success
        performance_metrics:
          execution_time_ms:
            $less_than: 30000  # Must complete in under 30 seconds
          memory_usage_mb:
            $less_than: 512    # Must use less than 512MB
Common Performance Anti-Patterns
Avoid These Patterns
Sequential Processing When Parallel is Possible
# ❌ Bad - sequential processing
steps:
  - id: process_1
    component: /data/process
    input:
      data: { $from: { workflow: input }, path: "data1" }
  - id: process_2
    component: /data/process
    input:
      data: { $from: { workflow: input }, path: "data2" }
      # Unnecessary dependency creates false sequence
      previous: { $from: { step: process_1 } }
# ✅ Good - parallel processing
steps:
  - id: process_1
    component: /data/process
    input:
      data: { $from: { workflow: input }, path: "data1" }
  - id: process_2
    component: /data/process
    input:
      data: { $from: { workflow: input }, path: "data2" }
      # No dependency - runs in parallel
Over-Granular Steps
# ❌ Bad - too many small steps
steps:
  - id: get_field_1
    component: /extract
    input:
      data: { $from: { step: load_data } }
      path: "field1"
  - id: get_field_2
    component: /extract
    input:
      data: { $from: { step: load_data } }
      path: "field2"
# ✅ Good - combined extraction
steps:
  - id: extract_fields
    component: /data/extract_multiple
    input:
      data: { $from: { step: load_data } }
      fields: ["field1", "field2"]
Large Data Copying
# ❌ Bad - copying large objects repeatedly
steps:
  - id: step1
    component: /process/a
    input:
      large_dataset: { $from: { step: load_large_data } }
  - id: step2
    component: /process/b
    input:
      large_dataset: { $from: { step: load_large_data } }
# ✅ Good - use blob storage
steps:
  - id: store_large_data
    component: /builtin/put_blob
    input:
      data: { $from: { step: load_large_data } }
  - id: step1
    component: /process/a
    input:
      data_blob: { $from: { step: store_large_data }, path: "blob_id" }
  - id: step2
    component: /process/b
    input:
      data_blob: { $from: { step: store_large_data }, path: "blob_id" }
Optimization Checklist
When optimizing workflow performance, check:
✅ Parallelism
- Steps without dependencies run in parallel
- No false dependencies between independent operations
- Data fetching operations run concurrently
✅ Resource Usage
- Large datasets stored in blobs
- Specific fields referenced instead of entire objects
- Appropriate component selection for task complexity
✅ Data Flow
- Minimal data copying and movement
- Early validation to catch errors before expensive operations
- Efficient use of intermediate results
✅ AI Optimization
- Concise, optimized prompts
- Appropriate model selection for task
- Response caching for repeated queries
✅ Architecture
- Appropriate granularity of steps
- Efficient workflow patterns (fan-out/fan-in, pipeline)
- Performance monitoring and testing
Following these optimization strategies will help you build high-performance Stepflow workflows that scale efficiently and provide fast response times.